Direkt zum Inhalt
Startseite

Dedicated to discovery

  • Über ELGA
    • Über ELGA
    • Karriere
    • Veranstaltungen
  • Service
    • Laborplanung
  • Kontakt
  • EN
  • ES
  • FR
  • IT
  • PT
  • EN-US
Startseite
  • Produkte
    • PURELAB
      • PURELAB® Dispenser
      • PURELAB® Flex
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • PURELAB® Chorus 2 +
    • CENTRA
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA
      • MEDICA® 150
      • MEDICA® 7/15
      • MEDICA® BIOX 2024
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA BIOX
      • Hubgrade
    • BIOPURE
      • BIOPURE® 300/600
    • PURENERGY 30
    • Komplette Produktpalette
  • Anwendungen
    • Allgemeiner Laborwasserbedarf
    • Atomspektroskopie
    • Elektrochemie
    • Flüssigchromatographie
      • High Performance Liquid Chromatography
    • Gaschromatographie
    • Genetik
    • High Performance Liquid Chromatography (HPLC)
    • Immunchemie
    • Klinische Biochemie
    • Massenspektrometrie
    • Mikrobiologische Analyse
    • Spektrophotometrie
    • Zellkulturen
  • Technologien
    • Aktivkohle
    • Elektroentionisierung (EDI)
    • Filtration
    • Ionenaustausch
    • PureSure
    • Ultraviolettes Licht (UV)
    • Umkehrosmose (RO)
  • Verunreinigungen im Wasser
    • Anorganische Verbindungen
    • Gelöste Gase
    • Mikroorganismen und Bakterien
    • Organische Verbindungen
    • Partikel
  • Wissen
    • BROSCHÜREN
    • Blog
    • Referenzen
    • Reinstwasser
    • Whitepaper rund um Laborwasser
  • Where to buy
  • Kontakt
Home
  • Kontakt
  • Produkte
    • PURELAB
      • PURELAB® Dispenser
      • PURELAB® Flex
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • PURELAB® Chorus 2 +
    • CENTRA
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA
      • MEDICA® 150
      • MEDICA® 7/15
      • MEDICA® BIOX 2024
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA BIOX
      • Hubgrade
    • BIOPURE
      • BIOPURE® 300/600
    • PURENERGY 30
    • Komplette Produktpalette
  • Anwendungen
    • Allgemeiner Laborwasserbedarf
    • Atomspektroskopie
    • Elektrochemie
    • Flüssigchromatographie
      • High Performance Liquid Chromatography
    • Gaschromatographie
    • Genetik
    • High Performance Liquid Chromatography (HPLC)
    • Immunchemie
    • Klinische Biochemie
    • Massenspektrometrie
    • Mikrobiologische Analyse
    • Spektrophotometrie
    • Zellkulturen
  • Technologien
    • Aktivkohle
    • Elektroentionisierung (EDI)
    • Filtration
    • Ionenaustausch
    • PureSure
    • Ultraviolettes Licht (UV)
    • Umkehrosmose (RO)
  • Verunreinigungen im Wasser
    • Anorganische Verbindungen
    • Gelöste Gase
    • Mikroorganismen und Bakterien
    • Organische Verbindungen
    • Partikel
  • Wissen
    • BROSCHÜREN
    • Blog
    • Referenzen
    • Reinstwasser
    • Whitepaper rund um Laborwasser
  • Where to buy
  • Kontakt
  • Über ELGA
    • Über ELGA
    • Karriere
    • Veranstaltungen
  • Service
    • Laborplanung
  • Kontakt
  • EN
  • ES
  • FR
  • IT
  • PT
  • EN-US
  • Datenschutzerklärung
  • Geschäftsbedingungen
  • Globale Entsprechenserklärungen
  • Patente
  • Trademarks
  • Impressum
  • Streamlining HPLC - Australia
Analytical Chemistry
Clinical & Pharma

Streamlining HPLC - Australia

29 März 2021
- by ELGA Editorial Team

Australian Science

High performance liquid chromatography (HPLC) is widely used for quantification of compounds in biological samples. However, the process can be slow and the analysis of different compound classes is best performed with dedicated columns and methods.

Researchers at The University of Queensland in Brisbane have developed an improved LC method for the simultaneous determination of sugars, carboxylates, alcohols and aldehydes in microbial fermentation samples and cell extracts. HPLC is a precise, highly reproducible technique that is frequently used for quantitative analysis of sugars, organic acids and alcohols. Numerous HPLC-based methods exist for these analyses, however, the need to run multiple dedicated protocols can reduce efficiency. Sample throughput can be increased by reducing chromatographic acquisition time, but this may compromise peak resolution and data reproducibility. 

There is therefore a clear need for a method that allows the analysis of multiple compound classes in a single run, offering the perfect balance between achieving the best possible separation and maximum throughput. This kind of method would be of great benefit for combined quantification of alcohols, organic acids and sugars in the food and chemical sectors and, importantly, also in biotechnology research. Potential biotechnology applications include quantitative analysis of fermentation samples as a tool for understanding microbial phenotypes, and for the development of improved microbial strains for the production of biofuels, fine chemicals or bulk chemical feedstocks as replacements for petrochemicals. However, only a limited number of such methods have been published, and either required very high temperature operation or achieved lower compound resolutions.

Sample Analysis

The Queensland HPLC study tested 30 compounds, monitoring the interaction of the retention times of compounds from various classes with column temperature, mobile phase concentration and flow rate. Aqueous analyte solutions and the mobile phase were prepared using Type I ultrapure water (18.2 kΩ) generated by an ELGA LabWater purification system. The column was flushed overnight with the same high purity water to help prolong its lifetime. 

Sugars and alcohols were monitored using a refractive index detector (RID), set on positive polarity with mobile phase in the reference cell, while organic acids were monitored using RID and/or an ultraviolet detector at 210 nm.

Finally, the method was tested on:

  • fermentation broth of a genetically modified Escherichia coli fermentation during aerobic growth on glucose in minimal medium
  • fermentation broth of Saccharomyces cerevisiae growing on the carbon sources glycerol and ethanol in minimal medium
  • the culture supernatant of Chinese Hamster Ovary (CHO) cells in complex cell culture medium using glucose and galactose as the main carbon source

Good peak shapes and separation were achieved for all three samples, and the main substrates and products were successfully quantified. 

The Results 

Optimization of the operation temperature and mobile phase composition enabled the Australian researchers to develop a method for the simultaneous quantification of at least 21 compounds, including carbohydrates and varied alcohol products. This new method is highly relevant for fermentation process development, due to its suitability for mapping varied metabolic routes from carbohydrates to alcoholic products, including mono-, di-, tri-alcohols, aldehydes, mono-, di- and tri-carboxylic acids, as well as sugar acids. Results also showed broad application potential in microbiological research, providing quantitative data for a range of common substrates in microbial fermentation, such as hexoses, pentoses and disaccharides. 

In addition, the method allowed 0 organic acids related to central metabolism, including gluconic acid and 2-ketogluconic acid, to be identified and quantified, making this technique suitable for microbes that favor the Embden–Meyerhof–Parnas and Entner–Doudoroff pathways for sugar utilization. Other potential biotechnology applications are the analysis of a range of alcohols currently studied as biofuels and chemical feedstock replacements, such as ethanol, 1-butanol, sec-butanol, iso-butanol, as well as 1- and 2-propanol.

Future Applications

Overall, this robust and versatile method provides a way to separate and quantify a broad range of metabolites in one HPLC run that will be suitable for a large range of samples. This includes microbial culture broth, cell culture media, and could be extended to intracellular samples and other compounds.

Why Choose ELGA LabWater in Australia?

The presence of impurities in laboratory water can be a major problem in research experiments, and can seriously compromise results. ELGA LabWater has been a trusted name in pure and ultrapure water since 1937. We believe in providing you with water purification solutions that can meet a wide range of needs and applications, backed by excellent service and support. For more information on our Type I ultrapure water systems, check out our PURELAB Quest, PURELAB Chorus 1 Complete and our PURELAB Flex models. 

Contact our Australian Partners today!

1 Lai, B., Plan, M., Hodson, M. and Krömer, J., 2016, ‘Simultaneous Determination of Sugars, Carboxylates, Alcohols and Aldehydes from Fermentations by High Performance Liquid Chromatography’, Fermentation, 2(4), p.6.

  • Sales Enquiry
  • Angebot anfordern
  • Technical Support
  • Einen Ansprechpartner finden

Sales Enquiry

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

Ich habe die Datenschutzerklärung gelesen und verstanden

Angebot anfordern

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

Ich habe die Datenschutzerklärung gelesen und verstanden

Technical Support

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

ELGA LabWater Deutschland

ELGA LabWater
Veolia Water Technologies Deutschland GmbH
Speicherstraße 14 A
29221 Celle
T: +49 (0) 51 41 803 0
F: +49 (0) 51 41 803 384

Referenzen

  • Abbott Diagnostics
  • DASA Medical Diagnostics
  • NeoDIN Medical Institute
  • North Staffordshire NHS Trust
  • Berufskolleg Olsberg

Ressourcen

  • Erfahren Sie mehr über Reinstwasser
  • Whitepaper rund um Laborwasser
  • Technologien zur Wasseraufbereitung
  • Laboranwendungen
  • Verunreinigungen im Wasser
  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?

© VWS (UK) Ltd, handelnd als ELGA LabWater.2025- Alle Rechte vorbehalten.
ELGA ist der globale Markenname von Veolia für Laborwasser.

  • Datenschutzerklärung
  • Geschäftsbedingungen
  • Globale Entsprechenserklärungen
  • Patente
  • Trademarks
  • Impressum
  • Sprache
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Andere Veolia Webseiten
    • Veolia
    • Veolia Foundation
    • Veolia Water Technologies
Elga Veolia
TOP

© 2017 ELGA Veolia